We-TIPS: Weak-Block-Based Transaction Inclusion Protocol with Signaling in DAG-based Blockchain

Canhui Chen and Zhixuan Fang

Institute for Interdisciplinary Information Science,

Tsinghua University

Blockchain System

DAG-based Blockchain

- Directed Acyclic Graph (DAG) structure:
 - Maintain entire graph
 - Consider all blocks
 - High throughput

Key Challenge: Transaction Inclusion Collision

[1] Lewenberg, Yoad, Yonatan Sompolinsky, and Aviv Zohar. "Inclusive block chain protocols." *Financial Cryptography and Data Security: 19th International Conference, FC 2015.*

Transaction Inclusion Collision in DAG

Transaction Inclusion Game

Player: miner 1 and miner 2

	Miner 2 chose tx1	Miner 2 chose tx2
Miner 1 chose tx1	(0.5*tx1, 0.5*tx1)	(tx1, tx2)
Miner 1 chose tx2	(tx2, tx1)	(0.5*tx2, 0.5*tx2)
	Transaction inclusion collision	

Equilibrium Strategy

Equilibrium strategy in transaction inclusion game [1]:

• miners are incentivized to avoid selecting the same transactions

Equilibrium Strategy is not enough!

Can only achieve ~70% utilization

[1] Lewenberg, Yoad, Yonatan Sompolinsky, and Aviv Zohar. "Inclusive block chain protocols." *Financial Cryptography and Data Security: 19th International Conference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers 19.* Springer Berlin Heidelberg, 2015.

Signal can help!

- Why collision?
 - The collision occurs because the miners can not access to the up-to-date information!
 - Waiting for block propagation. (long)
- How to improve?
 - Broadcast a small signal indicating the transaction inclusion in the block.
 - Waiting for signal propagation. (short)

TIPS: Transaction Inclusion Protocol with Signaling

- TIPS introduces a signal to indicate the transactions included in the block using Bloom Filter.
- TIPS broadcast the signal earlier than the whole block.

[1] Canhui Chen, Xu Chen and Zhixuan Fang, "TIPS: Transaction Inclusion Protocol with Signaling in DAG-Based Blockchain," IEEE Journal on Selected Areas in Communications (JSAC), volume 40, 2022.

TIPS: Transaction Inclusion Protocol with Signaling

- TIPS introduces a signal to indicate the transactions included in the block using Bloom Filter.
- TIPS broadcast the signal earlier than the whole block.

TIPS can achieve ~90% utilization! Can we do better?

[1] Canhui Chen, Xu Chen and Zhixuan Fang, "TIPS: Transaction Inclusion Protocol with Signaling in DAG-Based Blockchain," IEEE Journal on Selected Areas in Communications (JSAC), volume 40, 2022.

Limitation of TIPS & Motivation of We-TIPS

- TIPS only signals other miners when a new block is mined.
- We-TIPS: the weak-block-based transaction inclusion protocol
- We-TIPS can signal the miners during the mining process using weak block header.

Weak Block

- Mining: hash value h of a block header small enough
- Strong target: T_s (corresponds to mining difficulty)
- Strong header: $h < T_s$ (A valid header in PoW)
- Weak target: T_w
- Weak header: $T_s \le h < T_w$
- Weak block ratio: $\beta = T_w/T_s$
- Weak block contains partial PoW => can not be easily forged
- Each strong block => expected β weak blocks
- $\beta = 1$ indicates the scenario without weak blocks, where We-TIPS degenerates to TIPS

System Model of We-TIPS

We-TIPS Property

- The weak block would not affect the miner's reward.
- When the miners are homogeneous, the reward on the specific transaction is only related to the number of miners that select this transaction.

Similar to the Congestion Game / Potential Game

Transaction Inclusion Game in We-TIPS

• **Theorem 1**. The transaction inclusion game in We-TIPS is a potential game.

• Potential game => a pure strategy Nash equilibrium

Algorithm 2: Transaction Inclusion Strategy in We-TIPS

Input: $i^*, \mathbf{f}, W, \lambda, \Delta$ // the miner index i^* ; transaction fee \mathbf{f} ;
transaction selection matrix W; blockchain setting λ, Δ Output: T// The set of selected transactions

1 Function TransactionSelection $(i^*, f, W, \lambda, \Delta)$:

2 **for**
$$j = 1, ..., m$$
 do

- 3 Estimate the expected reward of transaction j, i.e., $e_j =$ Estimate $(i^*, f, W, \lambda, \Delta)$
- 4 Select the transactions with the top-n reward as a set T
- 5 Return T

6 Function Estimate
$$(i^*, f, W, \lambda, \Delta, j)$$

7 $c = \sum_{i \neq i^*} W(i, j) + 1$
8 $r = r_j(c)$ calculated by Lemma 2
9 Return r

Myopic Strategy in We-TIPS

Lemma 2. The expected reward for a miner to include transaction *j* given that there are total *c* miners who decide to include transaction *j* in their newly-mined block is

$$r_j(c) = \sum_{k=0}^{\infty} \left((\lambda \Delta)^k e^{-\lambda \Delta} \left(\prod_{i=0}^{k-1} (N-1-i) \right)^{-1} \cdot \sum_{t=0}^{\min(c-1,k)} {\binom{c-1}{t} \binom{N-c}{k-t} \frac{f_j}{t+1}} \right).$$

Equilibrium Analysis

Theorem 2. Algorithm 2 can achieve the η- approximate Nash equilibrium, where

$$\eta = O\left(\beta^{-1}N^2 \log N \sum_{j=1}^n f_j\right) \qquad \begin{array}{l} \text{A larger } \beta \Rightarrow \\ \text{A smaller } \eta\end{array}$$

• **Theorem 3**. When the weak block ratio β is large enough, i.e., $\beta \rightarrow \infty$, Algorithm 2 is guaranteed to achieve the pure strategy Nash equilibrium with probability 1.

Empirical Results of Conflux

- Conflux adopts the random transaction inclusion strategy with transaction fee priority $\frac{p_1}{f_1} = \frac{p_2}{f_2} = \cdots = \frac{p_m}{f_m}$.
- We have collected the blocks in 1000 epochs (from 32289102th epoch to 32290102-th epoch), which includes 5584 transactions but only 4043 unique transactions
- The block capacity utilization of Conflux is 72.40%
- 27.60% block capacity is wasted due to the transaction inclusion collision.

Experiment

- We conduct the experiment in a DAG-based blockchain simulator with the implementation of the PHANTOM [1]
 - The miners are homogeneous.
 - The size of transaction pool is m = 10000, each block can contain at most n = 2000 transactions.
 - The propagation delay for the whole block is a random variable following the normal distribution with the expectation as $\Delta = 10$, and the propagation delay for the signal is a random variable following the normal distribution with the expectation as $\tau = 1$.
- [1] Sompolinsky, Yonatan, and Aviv Zohar. "Phantom." IACR Cryptology ePrint Archive, Report 2018/104 (2018).

Weak Block Ratio Design

- Weak block ratio: $\beta = T_w/T_s$
- $\beta = 1$ indicates the scenario without weak blocks

Fig. 2. Utilization of We-TIPS with different ratios β

Performance Results

Fig. 3. Utilization of different transaction inclusion protocols

Fig. 4. TPS of different transaction inclusion protocols

Conclusion

- We propose We-TIPS, which allows miners to broadcast their weak headers as signals during the mining process.
- We investigate the transaction inclusion game in We-TIPS, and show that it is a potential game and further propose a decentralized transaction inclusion algorithm.
- We demonstrate the high performance of We-TIPS with intensive experiments.

Thanks~

Canhui Chen

Email: chen-ch21@mailto:tsinghua.edu.cn