
User Distributions in Shard-based Blockchain Network:
Queueing Modeling, Game Analysis, and Protocol Design

Canhui Chen
School of Computer Science and Engineering

Sun Yat-sen University, Guangzhou, China
chench296@mail2.sysu.edu.cn

Qian Ma
School of Intelligent Systems Engineering
Sun Yat-sen University, Shenzhen, China

maqian25@mail.sysu.edu.cn

Xu Chen
School of Computer Science and Engineering

Sun Yat-sen University, Guangzhou, China
Pazhou Lab, Guangzhou, China

chenxu35@mail.sysu.edu.cn

Jianwei Huang
School of Science and Engineering, Shenzhen Institute of

Artificial Intelligence and Robotics for Society
The Chinese University of Hong Kong, Shenzhen, China

jianweihuang@cuhk.edu.cn

ABSTRACT
Sharding is one of the most promising and practical methods to
achieve horizontal scalability of blockchain networks. However, the
increasing number of cross-shard transactions in blockchain shard-
ing protocols may degrade the system throughput. In this paper,
we investigate how to distribute users properly in the shard-based
blockchains to boost the system transaction performance. We first
build an open Jackson queueing network model to capture users’
transaction dynamics on shards. Then we cast users’ interactions as
a shard-based blockchain game, wherein each user aims to minimize
its transaction confirmation time and transaction fee. We investigate
the equilibrium of the game, and design a polynomial-time algorithm
to find efficient equilibria with good system performance. We further
design a novel sharding protocol with dynamic user distribution for
the permissionless blockchain, and the protocol can maintain good
performance in long-term dynamic environment. Extensive numeri-
cal results using realistic blockchain transaction data demonstrate
that the proposed algorithm and the designed protocol can achieve
superior performance for shard-based blockchains.

CCS CONCEPTS
• Networks → Network protocol design; Network performance
modeling; Network performance analysis.
KEYWORDS
blockchain network, sharding protocol, queueing, game theory

This work was supported in part by the National Natural Science Foundation of China
under Grant 62002399, the National Science Foundation of China (No. U20A20159,
No. U1711265, No. 61972432); the Program for Guangdong Introducing Innovative
and Entrepreneurial Teams (No.2017ZT07X355); the Pearl River Talent Recruitment
Program (No.2017GC010465); the Shenzhen Institute of Artificial Intelligence and
Robotics for Society. The corresponding author is Xu Chen.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MobiHoc ’21, July 26–29, 2021, Shanghai, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8558-9/21/07. . . $15.00
https://doi.org/10.1145/3466772.3467051

ACM Reference Format:
Canhui Chen, Qian Ma, Xu Chen, and Jianwei Huang. 2021. User Distri-
butions in Shard-based Blockchain Network: Queueing Modeling, Game
Analysis, and Protocol Design . In The Twenty-second International Sympo-
sium on Theory, Algorithmic Foundations, and Protocol Design for Mobile
Networks and Mobile Computing (MobiHoc ’21), July 26–29, 2021, Shang-
hai, China. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3466772.3467051

1 INTRODUCTION
Blockchain plays an important role in many fields such as finance,
supply chain, and IoT services, thanks to its great advantages of
decentralization, persistence, pseudonymity, and auditability [14].
However, the well-known trilemma of decentralization-security-
scalability in blockchain severely affects its wide adoption [27].
Faced with this challenge, sharding [12] is one of the most promis-
ing and practical methods to achieve horizontal scalability of the
blockchain network. The shard-based blockchain, i.e., breaking up
the blockchain network into individual segments (or shards), allows
multiple parallel transactions to be processed at the same time, which
has a great potential to boost the system throughput.

Shard-based blockchains, however, face the key challenge of
handling cross-shard transactions, which need to execute transaction
operations asynchronously in different blocks in different shards.
As the number of shards increases, the cross-shard transactions
will dominate. Since executing cross-shard transactions leads to
excessive cross-shard communication overhead, it would exhaust the
network bandwidth, diminish the scalability benefit of sharding and
even degrade the system transaction performance. Moreover, when a
user initiates a transaction, he pays a transaction fee to the miner or
validator who processes the transaction. Extra efforts in confirming
cross-shard transactions would lead to higher transaction fees.

To reduce cross-shard transactions, one major approach is to dis-
tribute users properly into shards. Existing sharding protocols often
distribute users into shards randomly [19]. This user distribution
policy has the advantage of simplicity and robustness. However, it
cannot optimize the system performance, e.g., minimizing users’
transaction latency and transaction fees. In this paper, we aim at
addressing the following fundamental question.

Key Question 1: How good is such random user distribution in
terms of system transaction performance?

221

https://doi.org/10.1145/3466772.3467051
https://doi.org/10.1145/3466772.3467051
https://doi.org/10.1145/3466772.3467051

MobiHoc ’21, July 26–29, 2021, Shanghai, China Canhui Chen, Qian Ma, Xu Chen and Jianwei Huang

To improve the performance in the shard-based blockchain net-
work, we further explore the user distribution strategies that take into
account the transaction patterns. A simple strategy is to group users
with high mutual transaction frequencies into one shard. However,
such a strategy may result in some shards with large user sizes and
crowed transactions, which lead to the bottleneck of intra-consensus
of the shard-based blockchain [27]. Moreover, the blockchain is
a decentralized system, and a user would join a shard that maxi-
mizes its own benefit. Therefore, it is essential to investigate users’
selfish behaviors through a game-theoretic approach. The second
fundamental question that we would like to address in this paper is:

Key Question 2: Is there a transaction-aware user distribution
that achieves a better system performance than the random user
distribution and no user has the incentive to deviate from?

To address these two key questions, we first develop an open
Jackson queueing network model to capture the impact of user dis-
tribution on the system-wide transaction performance. We derive the
closed-form average transaction confirmation time and the average
transaction fee.We then develop a novel shard-based blockchain
game to model users’ selfish behaviors of choosing the shards to
join. We show that randomly and uniformly distributing all the users
into all the shards is an approximate equilibrium. However, such dis-
tribution will result in massive cross-shard transactions, which will
degrade the system performance. Hence, we further explore other
possible equilibrium states under different transaction patterns to see
if it is possible to achieve more efficient system-wide performance.

To find efficient equilibria that can achieve outstanding system
performance, we propose a polynomial-time algorithm with several
heuristic searching rules by taking into account users’ transaction
patterns. Furthermore, based on the aforementioned theoretical anal-
ysis and practical algorithm, we design a novel sharding protocol
with dynamic user distributions in the permissionless blockchain.
The proposed algorithm ensures the self-stability property of the
equilibrium, which guarantees users to achieve a stable and mutually-
satisfactory state without any incentive to deviate. The dynamic user
redistribution makes the system robust to dynamic environment.
Simulations demonstrate that our proposed protocol can maintain a
good long-term performance in a dynamic environment.

The key contributions of the paper are listed as follows:

• We propose an open Jackson queueing network model to
characterize the transaction dynamics of the shard-based
blockchain, and derive the average transaction confirmation
time and the average transaction fee.

• We present a novel shard-based blockchain game and explore
various equilibria under different transaction patterns. This
provides practical insights for the transaction-aware user dis-
tribution in the sharding protocol, which is a key challenging
issue and future trend as emphasized in the survey paper [27].

• We develop an efficient equilibrium finding algorithm of low
complexity, which can achieve an equilibrium with a near-
optimal system performance.

• We accordingly design a novel sharding protocol with dy-
namic user distributions, which can maintain a good long-
term performance in a dynamic environment. This protocol
is designed from user perspective and can be applied to most
existing sharding protocols.

Users in the first category

Users in the second category

Users in the third category

Transaction Frequency Graph

First Shard

Second Shard

Third Shard

Cross-shard Transaction

Cross-shard Transaction

Intra-shard Transaction

User Distribution in the Shard-Based Blockchain

Figure 1: A shard-based blockchain system model

Due to space constraints, some of the proofs are presented in [4].

2 SYSTEM MODEL
We consider a shard-based blockchain with S shards and N users.
We divide users into K categories based on their transaction patterns
[27]. Figure 1 shows a shard-based blockchain with 3 shards and 3
categories of users.

2.1 Participants in Shard-based Blockchain
There are two types of participants in the shard-based blockchain:

• Validator: A blockchain validator plays a key role in the
system consensus, as the validator is responsible for storing
data, processing transactions, and adding new blocks to the
blockchain to maintain the system secure.

• User: A blockchain user is someone who does not involve in
system consensus, but he uses the blockchain applications,
i.e., initiates or receives transactions.

In most sharding systems [1, 3, 12, 28], validators are randomly
distributed to different shards periodically for system security. How-
ever, users can be distributed to different shards via some known and
even deterministic rules such as using the least-significant bits of
users’ addresses [3, 24]. Most of the previous work study the shard-
based blockchain through the validator perspective [1, 9, 12, 28].
Along a different line, in this paper we mainly focus on the user
perspective for system performance analysis and optimization.

2.2 Dynamic Shard Selection
Efficient user distribution on shards (i.e., shard selection) has been
recently emerging as an important research issue for next-generation
shard-based blockchain design [23]. In some existing blockchains,
even though users are allocated to different shards using some fixed
rules (e.g., based on users’ addresses), a user still has partial control
regarding which shard to join, for instance:

(1) A user can generate a number of addresses and pick up the
address that is allocated to the shard that the user wants to
join in. This process is similar as the mining process in PoW-
based blockchain [16]. As generating a number of addresses
is computationally cheap, the user can implement such a shard
selection strategy even on his mobile device.

(2) If a user who is in shard i and and wants to change to shard
j, he should first generate a number of addresses and pick up
the address in shard j, then initiate a cross-shard transaction
with a certain transaction fee to transfer his assets from the
address in shard i to the address in shard j.

222

User Distributions in Shard-based Blockchain Network: Queueing Modeling, Game Analysis, and Protocol Design MobiHoc ’21, July 26–29, 2021, Shanghai, China

2.3 User Distributions and Transactions
Let R ∈ RS×K denotes the distribution of users, where R(i,k) de-
notes the fraction of users of category k joining shard i. Besides, let
r = [r1 · · · rK] be the population fraction vector, where rk is the
population fraction of user of category k. Hence, we have r = 1TS R.

Users in different categories have different transaction frequen-
cies. Let the real square matrix T ∈ RK×K be the transaction fre-
quency matrix. Specifically, T (k, l) denotes the frequency of transac-
tions that are initiated by a user of category k and sent to a user of
category l . We assume that the transaction frequency between users
in the same category is higher than or equal to that between users in
different categories, i.e., T (k,k) ≥ T (k, l), ∀k, l ∈ {1, . . . ,K}.

As illustrated in Section 7, such transaction matrix can be obtained
based on users’ transaction records using some data mining tools
such as community detection. We define q = T1K = [q1 · · · qK]

T,
where qk =

∑K
l=1T (k, l) denotes the total transaction frequency

initiated by a user of category k. Besides, we define p = 1T
KT =

[p1 · · · pK], where pl =
∑K
k=1T (k, l) denotes the total transaction

frequency received by a user of category l .
We divide transactions in the shard-based blockchain into intra-

shard transactions and cross-shard transactions. An intra-shard
transaction is a transaction that happens in a single shard. The intra-
shard transaction are executed in one block in a single shard syn-
chronously with a short transaction confirmation time and a low
transaction fee fintra. A cross-shard transaction is a transaction sent
from one shard to another. The cross-shard transactions need to
be executed in different blocks in different shards asynchronously,
which lead to a longer transaction confirmation time and a higher
transaction fee fcross. To achieve tractable analysis in the following
study, we assume that each shard of the blockchain adopts the same
transaction protocol, such that the intra-shard transaction fee fintra
on different shards is homogeneous and the cross-shard transaction
fee fcross across different pairs of shards is the same. We also assume
that fintra < fcross, i.e., the cross-shard transaction fee is higher

3 INTRA- AND INTER-SHARD
TRANSACTION MODELING

In this section, we formulate users’ transaction confirmation time
based on queueing theory and discuss users’ transaction fee.

3.1 Queueing Model for Transaction
Confirmation Time

We first introduce the following two terminologies1.

• Transaction inclusion time: the time from the transaction
being issued to its first inclusion into a block in a shard.

• Transaction confirmation time: the time from the transac-
tion being issued to its last inclusion into a block in a shard.

For intra-shard transactions, the transaction confirmation time
is equal to the transaction inclusion time, since its operations are
synchronously executed in one block in one shard.

1When defining the transaction confirmation time, we ignore the additional confirma-
tions. In the existing blockchain system, a transaction will be visible to its payee once
it is packed into a block in a shard (first confirm) [24]. To be secure against double
spending [16], it will be secured after n − 1 successive blocks appended (n-th confirm).

For a cross-shard transaction that involves shard i and shard j, the
transaction confirmation time is approximately equal to the sum of
the transaction inclusion time in shard i and shard j according to the
mechanisms for handling cross-shard transactions2. The transaction
confirmation time of a cross-shard transaction where user A in shard
i sends 10 coins to user B in shard j can be calculated as follows:

• The transaction is included in a block in shard i, which will
subtract 10 coins from user A’s account.

• After validation in shard i, the transaction will be forwarded
to shard j.

• The transaction is included in a block in shard j, which will
add 10 coins to user B’s account.

Notice that the transaction forward time is negligible, since the
size of a transaction is small enough to be quickly broadcast to the
network. Hence, the transaction confirmation time of this cross-shard
transaction can be well approximated by Q(i) +Q(j), where Q(i) and
Q(j) are the transaction inclusion time in shard i and shard j.

To calculate the transaction confirmation time, we model the
shard-based blockchain as an open Jackson queueing network [7]
shown in Figure 2. Specifically, we model each shard as an M/M/1
queue [21] and all shards with cross-shard transactions form an open
Jackson queueing network. According to the Jackson’s theorem
[7], we can model the intra- and cross-shard transactions among
the shards as multiple independent M/M/1 queues with different
aggregate arrival rates.

3.1.1 Arrival Process of a Shard. We assume that the transac-
tions arrive at shard i according to a Poisson process with an arrival
rate λi [8, 21]. As illustrated in Figure 2, λi consists of two com-
ponents. The first component λI

i is generated by the users initiating
transactions in the shard, including the intra-shard transactions and
cross-shard transactions initiated by users in shard i, that is,

λI
i = N

K∑
j=1

R(i, j)
K∑
k=1

T (j,k). (1)

The second component λII
i is related to the received cross-shard

transactions initiated by the users in other shards, that is,

λII
i = N

S∑
m=1,m,i

K∑
k=1

R(m,k)
K∑
j=1

T (k, j)
R(i, j)

r j
. (2)

Combining (1) and (2), for an open Jackson queueing network with
the utilization less than one at every queue3, the total transaction
arrival rate λi of shard i is

λi = λI
i + λ

II
i . (3)

3.1.2 Service Process of a Shard. Each arriving transaction
to a shard can be regarded as entering the queue buffer of the shard

2Different blockchain systems have different mechanisms for handling cross-shard
transactions. Monoxide handles cross-shard transactions by relaying transactions across
asynchronous zones. Ethereum 2.0 handles cross-shard transactions using the beacon
chain. We consider an abstract but general model here.
3The utilization of a M/M/1 queue with the arrival rate as λ and the service rate as µ is
ρ = λ/µ . And the utilization less than one implies the stability of the queue.

223

MobiHoc ’21, July 26–29, 2021, Shanghai, China Canhui Chen, Qian Ma, Xu Chen and Jianwei Huang

Initiated transaction

Received cross-shard transaction

mining

transaction

mining

transaction

cross-shard transaction

λ"

λ#

μ

μ

Figure 2: Illustration of the queueing model for shard-based
blockchain. Each shard is modeled as an M/M/1 queue, and two
shards form an open Jackson queueing network.

and waiting for processing according to the First Come First Ser-
vice (FCFS) policy4. The transaction service process ends when
the transaction is verified and included in a block by a miner who
successfully solves the mining puzzle. And the block will be ap-
pended to blockchain of that shard. For simplicity, we assume that
each block contains exactly one transaction, which captures the
block size constraint in reality and has been adopted in previous
studies [5, 10]. In many blockchain systems such as Bitcoin [16],
Ethereum [26], and Monoxide [24], blocks are generated according
to the proof-of-work (PoW) consensus mechanism or its variants,
and the process of generating blocks has been shown to follow the
Poisson process [2]. Hence, we assume that the mining capability
of each shard is homogeneous and the block generation of a shard
follows the Poisson process with a rate µ. Note that we only consider
the stable case where the utilization is less than one at every queue.
Based on Pollaczek-Khinchin formula [22], the transaction inclusion
time of a shard with transaction arrival rate λ is

д(λ) =

{
1

µ−λ , if λ < µ,

∞, otherwise.

Specially, the transaction inclusion time Q(i) in shard i is

Q(i) = д(λi). (4)

As a result, we can derive the average transaction confirmation time
for a user in the following lemma.

LEMMA 1. The average transaction confirmation time for a user
of category k in shard i under user distribution state R is

W (i, k, R) =
1
qk

(
S∑

m,i

K∑
n=1

(
Q (m) +Q (i)

) R(m, n)
rn

T (k, n)

+

K∑
n=1

R(i, n)
rn

T (k, n)Q (i)

)
.

(5)

The proof is given in Appendix A in the technical report [4].

3.2 Transaction Fee Model
The average transaction fee of a user depends on both the intra-
shard transactions and the cross-shard transactions. We calculate the
average transaction fee for a user in the following lemma.

4In the realistic blockchain, the transaction waiting time in a queue is greatly depends
on its transaction fee [8]. Since we only investigate the system performance here, the
First Come First Service (FCFS) policy is a good approximation [21].

LEMMA 2. The average transaction fee for a user of category k
in shard i under user distribution state R is

F (i,k,R)=
1
qk

©«
K∑
j=1

T (k, j)
R(i, j)

r j
fintra +T (k, j)

(
1 −

R(i, j)

r j

)
fcross

ª®¬ .
The proof is given in Appendix B in the technical report [4].

4 SHARD-BASED BLOCKCHAIN GAME AND
PERFORMANCE ANALYSIS

In this section, we analyze the scenario where each user chooses a
shard to join to maximize its own benefit. We model users’ interac-
tions as a shard-based blockchain game, and study its equilibrium.
We further investigate the system performance at the equilibria.

4.1 Shard-based Blockchain Game
We formulate the shard-based blockchain game as a non-cooperative
game G = (N ,K, r,S,U), where N is the set of users, K =

{1, 2, ...,K} is the set of user categories, and r = {r1, r2, ..., rK }
is the population proportion of the proportions of users of each cat-
egory. Furthermore, S = {1, 2, . . . , S} denotes the common set of
strategies for all users, where a strategy i ∈ S represents a user
joining shard i. Finally, U is the set of the user utilities. Specifically,
the utility of a user of category k, k ∈ K, achieved by choosing
shard i, i ∈ S, depends on the transaction confirmation time and the
transaction fee under the user distribution state R as follows:

U (i,k,R) = −W (i,k,R) − βF (i,k,R), (6)

where β represents the relative sensitivity of the transaction fee
compared to the transaction confirmation time.

In the following analysis, we focus on the case where there is a
large population of users and a fixed number of strategies, i.e., N
is large while S and K are much smaller than N . This is consistent
with the practical shard-based blockchain [3, 24], where the number
of users is quite large, and the number of shards and the number of
user categories are relatively small compared to the number of users.
Due to the large population size, in the following we will also adopt
the population state (i.e., user distribution state) R to describe the
equilibrium state of the shard-based blockchain game.

4.2 Equilibrium Analysis
In this subsection, we investigate the equilibria of the shard-based
blockchain game. Let R(k,i, j) denote the updated user distribution
where a user of category k under the distribution R moves to shard j
while other users remain unchanged. Thus we have

R(k,i, j)(î, k̂) =

R(i,k) − 1

N , î = i, k̂ = k,

R(j,k) + 1
N , î = j, k̂ = k,

R(î, k̂), otherwise.

First, we introduce the definition of Nash equilibrium.

DEFINITION 4.1. (Nash Equilibrium [25]). A population state
R∗ is a Nash equilibrium of the shard-based blockchain game if for
any R∗(i,k) , 0 we have

U (i,k,R∗) ≥ max
j ∈S

U (j,k,R∗
(k,i, j)),∀k ∈ K, i ∈ S. (7)

224

User Distributions in Shard-based Blockchain Network: Queueing Modeling, Game Analysis, and Protocol Design MobiHoc ’21, July 26–29, 2021, Shanghai, China

The Nash equilibrium is a steady state under which users can
achieve a mutually satisfactory solution and no user has the incen-
tive to deviate. Note that in this study we only consider the pure
strategy Nash equilibrium. The mixed strategy Nash equilibrium is
impractical since a user needs to switch its shard selection frequently,
which leads to a significant cost due to cross-shard transactions to
transfer its profiles and assets across different shards.

For the shard-based blockchain game, we have the following
result.

THEOREM 1. A shard-based blockchain may not possess a Nash
equilibrium.

The proof is given in Appendix C in the technical report [4].
Motived by this, we will also consider a relaxed concept of ap-

proximate Nash equilibrium for the shard-based blockchain game,
which is defined as follows.

DEFINITION 4.2. (Approximate Nash Equilibrium [25]). A pop-
ulation state R∗ is an ϵ-approximate Nash equilibrium of the shard-
based blockchain game if for any R∗(i,k) , 0 we have

U (i,k,R∗) ≥ max
j ∈S

U (j,k,R∗
(k,i, j)) − ϵ,∀k ∈ K, i ∈ S. (8)

Here ϵ ≥ 0 is the gap from a (precise) Nash equilibrium, which
can also be understood as the maximum switching cost that a user
can tolerate for transferring to another shard, e.g., transaction fee.

The following theorem formulates the equilibria of the shard-
based blockchain game.

THEOREM 2. Let R be the set of the feasible user distributions,

R = {R |1T
SR = r,

S∑
i=1

K∑
k=1

R(i, k) = 1, ∀i, k, 0 ≤ R(i, k) ≤ 1, λi < µ }.

Define E as a subset of R as follows:

E = {R ∈ R |∀i, k, R(i, k) , 0 ⇒ ∀i′, U (i, k, R) ≥ U (i′, k, R)}.

Then ∀R ∈ E is an O(1/N)-approximate Nash equilibrium.

The proof is given in Appendix D in the technical report [4].
The user distribution R ∈ R is a feasible user distribution with

the stability of the blockchain system5. Moreover, the condition that
∀i,k,R(i,k) , 0 ⇒ ∀i ′,U (i,k,R) ≥ U (i ′,k,R) implies that under
the user distribution R ∈ E, any user of any category exactly stays
at the shard that maximizes its utility. When the population size N
is large enough, the effect of any user changing to another shard is
negligible. Thus it is an O(1/N)-approximate Nash equilibrium.

The following theorem shows that the random and uniform user
distribution can be an approximate Nash equilibrium.

THEOREM 3. Randomly and uniformly distributing all categories
of users into S shards is an O(1/N)-approximate Nash equilibrium
of the shard-based blockchain game, when the blockchain system is
stable.

The proof is given in Appendix E in the technical report [4].
Theorem 3 reveals the game theoretical basis for random and

uniform distribution in the shard-based blockchain. We next investi-
gate the user aggregation phenomenon wherein users only choose a
subset of shards with the remaining shards being empty.
5The stability of the blockchain transaction queue implies that the transactions in the
queue cannot be accumulated to infinity. The stability of the shard-based blockchain
system implies that the transaction queue of each shard is stable.

THEOREM 4. Randomly and uniformly distributing all categories
of users into s shards (s < S) is an O(1/N)-approximate equilibrium
of the shard-based blockchain game when

λ ≤ µ −
µ(s − 1)

s + β(fcross − fintra)µ
, (9)

where λ is the transaction arrival rate of the selected shards, which
can be calculated according to (3).

The proof is given in Appendix F in the technical report [4].
Theorem 4 implies that when the current shards are crowded, i.e.,

λ > µ −
µ(s−1)

s+β (fcross−fintra)µ
, building new shards is necessary, since

users are motivated to join the new shards, which helps to maintain
the stability of the blockchain system. However, when the current
shards are not so crowded, i.e., satisfying condition (9), building
a new shard is pointless, since no user will spontaneously the new
shard.

We next analyze the equilibrium in a special case where the
transaction frequency between the users in the same category is
strictly dominant, i.e., T (k,k) >

∑K
j=1, j,k T (k, j),∀k ∈ K .

THEOREM 5. Distributing the users in the same category in one
shard is an O(1/N)-approximate Nash equilibrium of the shard-
based blockchain game when the blockchain system is stable and

T (k,k)∑K
j=1, j,i T (k, j)

≥ 2
maxi ∈S Q(i)

mini ∈S Q(i)
− 1,k ∈ K, (10)

where Q(i) is calculated according to (4).

The proof is given in Appendix G in the technical report [4].
Theorem 5 shows that when users in the same category have

much higher transaction frequency than that of users in different
categories, i.e., satisfying condition (10), distributing users in the
same category in one shard is an equilibrium.

4.3 Performance Analysis
We then analyze the performance achieved at the equilibrium of the
shard-based blockchain game. We quantify the performance by the
important metric: the average transaction confirmation time (ATCT)
of the shard-based blockchain, which is defined as follows

ATCT =

∑S
i=1

∑K
k=1 R(i,k)W (i,k,R)qk∑K

k=1 rkqk
. (11)

Intuitively, a shorter average transaction confirmation time implies a
better performance of the blockchain system with greater through-
put and a better user experience. According to (11), we obtain the
following result.

LEMMA 3. When distributing users in different shards randomly
and uniformly, the ATCT of the shard-based blockchain is

ATCT =
2S − 1
S

Q,

where Q = 1/
(
µ − N

S
∑K
k=1 rkqk +

N (S−1)
S2

∑K
k=1 rkpk

)
.

Lemma 3 shows that when adopting the strategy of randomly and
uniformly distributing users into all shards, the ATCT decreases with
the number of shards. Note that, when S → ∞, we have ATCT →

2/µ, which shows that random and uniform distribution is a strategy

225

MobiHoc ’21, July 26–29, 2021, Shanghai, China Canhui Chen, Qian Ma, Xu Chen and Jianwei Huang

that can achieve the scalability of the blockchain network when
the number of shards is large enough. However, we will show that
random and uniform distribution will result in massive cross-shard
transactions, which will degrade the system performance.

To measure the impact of cross-shard transactions on the perfor-
mance of shard-based blockchain, we define the cross-shard transac-
tions ratio (CSTR) as the ratio between the number of cross-shard
transactions and the number of total transactions in below:

CSTR =

∑S
i=1

∑K
j=1 R(i, j)

∑K
k=1T (j,k)

(
1 − R(i,k)

rk

)
∑K
j=1 r j

∑K
k=1T (j,k)

. (12)

According to (12), we have the following result.

LEMMA 4. When distributing users in S shards randomly and
uniformly, the CSTR of the shard-based blockchain is

CSTR =
S − 1
S
.

Lemma 4 shows that when adopting the strategy of random and
uniform distribution over all the shards, the CSTR increases with
the number of shards in the shard-based blockchain. Indeed, when
S → ∞, we have CSTR → 1, which implies that the number of the
cross-shard transactions is a critical issue in the sharding protocol
under random user distribution.

5 POLYNOMIAL-TIME ALGORITHM FOR
EFFICIENT EQUILIBRIUM SEARCHING

In the previous section, Theorem 3 shows that randomly and uni-
formly distributing users is an O(1/N)-approximate Nash equilib-
rium. Nevertheless, Theorems 4 and 5 imply that we can exploit
the structural characteristic of the shard-based blockchain systems
to explore equilibria which can be more efficient in terms of the
system-wide performance. To find the (approximate) equilibrium
states with the best performance (e.g., the smallest ATCT), we need
to explore the space of all equilibrium states. However, exploring all
the equilibria of the game is computationally complex and infeasible.
As a result, based on the equilibrium analysis in Section 4.2, we
propose several heuristic rules to narrow down the search space.

Suppose that users of category k are distributed in the set of shards
Xk and |Xk | denotes the number of shards. Then, we introduce the
following heuristic rules:

(1) Users of the same category should be randomly and uniformly
distributed in their selected shards, that is,

∀k ∈ {1, . . . ,K},∀i ∈ Xk ,R(i,k) =
rk
|Xk |
.

(2) Users of different categories should be distributed in different
shards, otherwise, they should be distributed identically, that is,

∀j,k ∈ {1, . . . ,K}, Xj ∩ Xk = ∅ or Xj = Xk .

Intuitively, the rules (1) and (2) above imply that we should
partition the set of shards into multiple groups and for each group of
shards we choose the proper subset of user categories to distribute
their users. Moreover, we still randomly and uniformly distribute the
users within each group of shards to achieve the equilibrium for the
ease of implementation.

Denote the search space after applying the heuristic rules above
as Ω, then we have the following lemma.

Algorithm 1 Search for efficient equilibrium
1: Sort the user category list such that we have r1q1 ≥ r2q2 ≥ · · · ≥

rKqK .
2: for k = 1 to K do
3: T = ∅.
4: for n = 1 to S − | ∪k−1i=1 Xi | do
5: C = { | ∪k−1i=1 Xi | + 1, . . . , | ∪k−1i=1 Xi | + n }.
6: Distribute users in category k into shardsC based on the heuristic

rule (1) and construct the distribution RC .
7: if T , ∅ and U (∗, i, RT) > U (∗, i, RC) then
8: break
9: end if

10: if U (∗, i, RC) > −∞, i.e., the system is stable then
11: T = C .
12: u =

∑K
i=k+1U (∗, i, R′)ri /

∑K
i=k+1 ri , where R′ is the user

distribution with users in category k + 1, . . . , K distributing in shards
{ | ∪k−1i=1 Xi | + n + 1, . . . , S }.

13: if U (∗, k, RC) > u then
14: break
15: end if
16: end if
17: end for
18: X = {X1, . . . , Xk−1 } ∪ {T }.
19: Xk = argmaxX∈XU (∗, k, R′′), where R′′ is the distribution after

distributing users in category k into shards X based on heuristic (1).
20: Distribute users in category k into shards Xk based on heuristic (1).
21: while there exists a user who has the incentive to move from shard i

to shard j do
22: P = {m |i ∈ Xm or j ∈ Xm,m = 1, . . . , K }.
23: X = ∪m∈PXm .
24: Redistribute users of category m into shards X based on rule (1)

and update Xm = X, ∀m ∈ P.
25: end while
26: end for
27: return R, where R is the final user distribution.

LEMMA 5. The size of the set of all feasible user distributions,
i.e., |R |, is O(SN). By applying the heuristic rules above, the size of
the search space |Ω | is O(SK).

The proof is given in Appendix H in the technical report [4].
Since N ≫ K , the heuristic rules can significantly narrow down

the search space. To find an efficient equilibrium, we can then apply
some heuristic optimization algorithms (e.g., evolutionary algorithm
[20]) over the pruned search space. Nevertheless, when S and K are
large, exploring the search space can be still computationally inten-
sive. Hence we propose a polynomial-time algorithm (Algorithm 1)
to find an efficient equilibrium by progressively improving users’
utilities through proper user distributions. Notice that based on the
heuristic rules (1) and (2), the expected utilities of users of the same
category should be the same. For convenience, we denote U (∗,k,R)
as the utility of a user of category k under the distribution R, i.e.,
∀k ∈ {1, . . . ,K},∀i s.t. R(i,k) , 0, we have U (∗,k,R) = U (i,k,R).

Based on the greedy principle, we first sort the user category list
by the users’ transaction frequency (Line 1). Then the algorithm
proceeds in rounds. In each round, we distribute a new kind of users
into shards. According to the heuristic rule (2), a new kind of users,
i.e., users in category k, can choose to join the empty shards with
no users (Line 5) or the shards that the previous users have chosen,

226

User Distributions in Shard-based Blockchain Network: Queueing Modeling, Game Analysis, and Protocol Design MobiHoc ’21, July 26–29, 2021, Shanghai, China

Redistribute

Validators

......

Redistribute

Validators

Redistribute Users

validator redistribution epoch validator redistribution epoch validator redistribution epoch validator redistribution epoch

user redistribution epoch
validator vote and system reconfiguration epoch:

vote passes or system needs reconfiguration

validators vote and monitor system

validator vote and system reconfiguration epoch: continue without change

Redistribute

Users

Redistribute

Validators

Figure 3: Sharding protocol with dynamic user distributions

i.e., Xi , i < k , (Line 18). When users in category k choose the empty
shards to join, the algorithm will encourage the users to choose a
proper number of empty shards such that the blockchain system
is stable and there is enough space for the remaining users (Lines
4-17). Then users in category k will choose to join the shards that can
maximize their utilities under the constraints of the heuristic rules
(1) and (2) (Lines 18-20). When the user distribution changes, there
may exist a user who has the incentive to move from shard i to shard
j. In this case, the algorithm will redistribute all the users who have
joined shard i and shard j and until it achieves an equilibrium state,
i.e., no user has the incentive to move to another shard (Lines 21-25).
Then one round ends. After proceeding K rounds, the algorithm will
output an efficient equilibrium R (Line 27).

Based on the analysis above, we have the following theorem.

THEOREM 6. Algorithm 1 computes an efficientO(1/N)-approximate
equilibrium in polynomial time with the computational complexity
of O

(
SK3(S +min{S,K})

)
.

The proof is given in Appendix I in the technical report [4].

6 PROTOCOL DESIGN WITH DYNAMIC
USER DISTRIBUTIONS

In this section, we design a sharding protocol with dynamic user
distributions in the permissionless blockchain based on the afore-
mentioned theoretical analysis and practical algorithm.

6.1 Dynamic Sharding Protocol
As shown in Figure 3, there are three different epochs in this system:

• Validator redistribution epoch. In each validator redistri-
bution epoch, validators will be randomly redistributed to
different shards, which is a common practice in current shard-
based blockchains [1, 9, 12, 28].

• User redistribution epoch. In each user redistribution epoch,
users will be redistributed to different shards based on our
proposed algorithm.

• Validator vote and system reconfiguration epoch. In each
validator vote and system reconfiguration epoch, validators
in all shards will vote to decide whether to redistribute users,
and collect the block statistics to decide whether to change
the number of shards in the system.

Similar to most current shard-based blockchains, the validator
redistribution epoch is short, e.g., 10 min in Elastico [12], due to the
system security concern. But the user redistribution epoch might be
as long as several months to adapt to the long-term evolution of the

users’ transaction patterns. Besides, the validator vote and system
reconfiguration epoch is longer than the validator redistribution
epoch but is shorter than the user redistribution epoch, which can
make the system adaptive to the short-term dynamic changes.

6.2 User Distribution Table
Different from the current shard-based blockchain, our system will
distribute users into different shards in a dynamic way instead of the
traditional fixed and deterministic way. Specifically, all the validators
maintain a global user distribution table (UDT), which maps each
user address to his shard. Note that the UDT does not need to record
the mapping information of all the users, it only records the mapping
information of the users that initiated or received at least b (b ≥ 1)
transactions in the previous user distribution epoch. Therefore, the
UDT is small enough to be stored in the memory cache. Thus,
the validators can easily find out which shard the user is allocated
to, when processing cross-shard and intra-shard transactions. The
address that does not lay in the UDT, will be allocated to the shard
in the fixed and deterministic way, for example, using the least-
significant bits of the address to determine which shard to join in.

6.3 User Redistribution Process
The user redistribution process goes as follows:

(1) The validators in shard i (i = 1, 2, . . . , S) generate a statistics
block and broadcast it to the other validators. There are sta-
tistics records of transactions initiated from shard i, begining
from the last user redistribution, in the statistics block. A sta-
tistics record is a triple of (addressA,addressB , #transaction),
i.e., the number of transactions sent from the addressA in
shard i to the addressB in this period is #transaction.

(2) After receiving all the statistics block, validators in each shard
construct a transaction network with the user addresses as
nodes and the transactions as edges.

(3) All the validators run the community detection algorithm [6]
to classify users into different categories.

(4) All the validators run Algorithm 1 to redistribute users to
different shards and construct the user distribution table. Val-
idators are encouraged to broadcast the user distribution table
to make it consistent in the system.

6.4 Validator Vote Process
In each validator vote and system reconfiguration epoch, the valida-
tor vote process goes as follows:

227

MobiHoc ’21, July 26–29, 2021, Shanghai, China Canhui Chen, Qian Ma, Xu Chen and Jianwei Huang

(1) The validators in shard i (i = 1, 2, . . . , S) vote in the shard. If
more than 50% validators vote for redistribution, then shard i
will be marked as “vote for redistribution”.

(2) If more than 2/3 of shards are marked as “vote for redistribu-
tion”, the user redistribution process will be conducted.

Consider the situation when the transactions are concentrated
in a few shards, leaving most of the shards with few transactions.
Without user redistribution, this skew transaction distribution will
degrade the system throughput. The validators in the shards with
many transactions can obtain high transaction fee rewards, while the
validators in the remaining shards can only obtain low transaction fee
rewards. Therefore, validators in those shards with few transactions
are motivated to vote for redistribution, which helps to rebalance the
transactions and improve the system performance.

6.5 System Reconfiguration Process
In each validator vote and system reconfiguration epoch, the valida-
tors will decide whether to change the number of shards as follows:

(1) The validators in shard i (i = 1, 2, . . . , S) collect the historical
block and transaction statistics from the last time of user
redistribution, and broadcast it to other validators.

(2) If more than 80% blocks in shard i exceed 80% of the max-
imum block size, and the average transaction fee is at least
50% higher than that in the previous user redistribution epoch,
shard i will be marked as “busy shard”.

(3) If more than 80% blocks in shard i are below 20% of the
maximum block size, and the average transaction fee is at
least 50% lower than that in the previous user redistribution
epoch, shard i will be marked as “idle shard”.

(4) If more than 80% shards are “busy shard”, the system will
double the number of shards6 and redistribute users.

(5) If more than 80% shards are “idle shard”, the system will
halve the number of shards7 and redistribute users.

We estimate the system using the two important metrics, i.e.,
block size and transaction fee. Generally, when the system is busy
like (4), i.e., there are too many unconfirmed transactions, the val-
idators will try to pack as more as possible transactions in a block
to obtain a higher transaction fee reward, and users need to raise
their transaction fee to increase his transaction priority. On the other
hand, when the system is idle like (5), i.e., there are few unconfirmed
transactions, validators can only pack a few transactions in a block,
and users are motivated to decrease their transaction fee. When the
system is busy, increasing the number of shards can help boost the
system performance. When the system is idle, decreasing the number
of shards can help to increase the utility of the system, maintain the
system security and guarantee the validators’ transaction reward,
which can motivate them to maintain the system consensus.

7 PERFORMANCE EVALUATION
In this section, we conduct extensive experiments based on the
historical transactions in Ethereum to evaluate the impact of user dis-
tribution on the performance of the shard-based blockchain.Besides,

6The number of shards has its maximum for system security concern.
7There is at least one shard in the blockchain system.

we conduct several simulations to demonstrate the high efficiency of
the proposed algorithm and the designed sharding protocol.

7.1 Experiments Design and Configuration
We evaluate the impact of the user distribution by playing back the
complete historical normal transactions [29] from the begining up
to the block height 1,000,000 in Ethereum [26], which includes
1,674,262 transactions and 55,350 unique user addresses. Further-
more, we model the transaction network as an undirected weighted
graph, which contains 55,350 nodes and 92,653 edges with their
weights denoting the numbers of transactions between two users.

We analyze the system performance under different user distribu-
tions. Particularly, the transaction processing rate of each shard is
µ = 1. The intra-shard transaction fee is fintra = 1 and the cross-shard
transaction fee is fcross = 2. The sensitivity of users to transaction
fee relative to the transaction confirmation time is β = 0.5. Our ex-
periments involve a set of users that continuously issue transactions
from the dataset to the system at a predefined rate.

7.2 Community Detection of User Categories
Due to the anonymity of the blockchain, it is difficult to get a user’s
category directly from the user’s address and transaction records.
Here, we adopt the Louvain algorithm [6] to maximize the modular-
ity of the transaction network and determine communities within the
blockchain. Each community corresponds to a user’s category.

After using the algorithm and merging a small number of com-
munities, we find that there are 15 communities corresponding to 15
categories, and the numbers of users in each category are 6144, 1399,
6997, 6422, 1117, 8403, 1060, 2141, 8387, 3165, 1205, 3278, 2044,
1680, and 1908. The modularity of this partition is 0.600. Figure 4
(a) shows the graph where nodes are the communities. Figure 4 (b)
shows the population size of each community.

7.3 Performance of Different User Distributions
In this subsection, we derive insights on how different user distribu-
tions affect the performance of shard-based blockchain. We compare
the following three user distributions:

• Random and uniform distribution: Randomly and uniformly
distribute all the users in all the shards.

• Efficient equilibrium state: Find the equilibrium user distribu-
tion with good performance using Algorithm 1.

• Centralized optimization: Using the “fmincoin” in MATLAB
[15] to do the local search to find the local optimum (which
may not be an equilibrium state). To find the near-optimal
solution, we repeat each experiment 100 times.

Figure 5 shows the ATCT of the shard-based blockchain under
different user distributions, from which we find that the system per-
formance under the efficient equilibrium state is near-optimal, while
random and uniform distribution has longer ATCT and worse system
performance. Figure 6 shows the queue lengths under different user
distributions where there are 4 shards in the shard-based blockchain
with the transaction rate equal to 250, from which we find that the
efficient equilibrium state will lead to higher performance with less
congestion than the random and uniform distribution.

228

User Distributions in Shard-based Blockchain Network: Queueing Modeling, Game Analysis, and Protocol Design MobiHoc ’21, July 26–29, 2021, Shanghai, China

(a) Induced graph where nodes are the
communities

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Community / Category

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

P
o
p
u

la
ti
o
n
 s

iz
e

(b) Population size of each community

Figure 4: Community detection results

20 40 60 80 100 120

transaction rate

0

1

2

3

4

5

6

7

8

9

A
T

C
T

Centralized Optimization

Nash Equilibrium State

Random and Uniform Distribution

(a) ATCT with 2 shards

40 80 120 160 200 240

transaction rate

0

10

20

30

40

50

60

A
T

C
T

Centralized Optimization

Nash Equilibrium State

Random and Uniform Distribution

(b) ATCT with 4 shards

Figure 5: Performance of the shard-based blockchain

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
4

(a) Centralized optimiza-
tion

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
4

(b) Efficient equilibrium
state

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
2

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

0

100

200

Q
u

e
u

e
 L

e
n

g
th

Shard S
4

(c) Random and uniform
distribution

Figure 6: Queue lengths of the shard-based blockchain

0 20 40 60 80 100

K

0

100

200

300

400

A
lg

o
ri
th

m
 r

u
n
n

in
g
 t
im

e
 (

s
)

(a) Running time of Algorithm 1 with
fixed S

0 20 40 60 80 100

S

0

5

10

15

20

A
lg

o
ri
th

m
 r

u
n
n
in

g
 t
im

e
 (

s
)

(b) Running time of Algorithm 1 with
fixed K

Figure 7: Running time of Algorithm 1

7.4 Running Time of Algorithm 1
Theorem 6 shows the computational complexity of Algorithm 1
is O

(
SK3(S +min{S,K})

)
. Here, we investigate the running time

of Algorithm 1 with different K and S . Figure 7 demonstrates the
running time of Algorithm 1, which is implemented in Python 3.6.3
performed on a personal computer equipped with Intel(R) Core(TM)
i7-7700HQ 2.80GHz CPU, 8.00GB memory, and a Windows 10
operation system. Figure 7 (a) shows that when fixing the value of
S or S ≪ K , the running time of Algorithm 1 increases cubically
as K increases, which implies that the computational complexity of
Algorithm 1 is Θ(K3) if S is a constant. Figure 7 (b) shows that when
K is a constant, the computational complexity is O(S2). On average,
the running time of Algorithm 1 with fixed K is approximately linear
because the loop in Lines 4-17 proceeds O(S) rounds in total in most
cases, which shows the high efficiency of Algorithm 1

7.5 Performance of the Sharding Protocol with
Dynamic User Distributions

In this subsection, simulations are conducted to investigate the per-
formance of the proposed dynamic sharding protocol.

Figure 8 (a) shows that as the user transaction pattern in the
blockchain system evolve gradually, the ATCT of the system in-
creases and the system performance becomes lower. Compared to
the fixed sharding protocol with random and uniform user distribu-
tion initially, the dynamic sharding protocol with periodical user
redistribution can help to system maintain the good performance
with low ATCT. Figure 8 (b) illustrates the situation when the the
transactions are gradually concentrated in the first shard, leading

to the infinite queueing time of that shard and infinite ATCT of the
system. As mentioned in Section 6.4, in this situation, the validators
in the first shard can obtain a high transaction fee reward, leaving
the other validators in other shards with low transaction fee reward.
Therefore, validators in other shards are motivated to vote for user
redistribution, and the user will be redistributed to balance the trans-
action fee reward and the improve the system performance. Figure
8 (c) illustrates the situation when the transaction rate exceeds the
system maximum throughput. In this situation, the validators will
double the number of shards and redistribute users, which can help to
maintain the system stability and boost the system performance. As
shown in Figure 8 (d), as the transaction rate decreases, the validators
will halve the number of shards and redistribute users, which can
help to increase the system utility and maintain the system security.

8 RELATED WORK
Several blockchain sharding protocols, such as Elastico [12], Monox-
ide [24], OmniLedger [9], Rapidchain [28], Chainspace [1] and
Ethereum 2.0 [3], have been proposed to achieve horizontal scalabil-
ity of the blockchain system. The increasing number of cross-shard
transactions is one of the key challenges in blockchain sharding
protocols. Several studies have been presented to solve the problem
[17, 19]. Due to the decentralization of the blockchain network, game
theory [25] is an ideal modeling tool and has been utilized to ana-
lyze users’ interactions within the blockchain network [11, 13, 18].
Besides, queueing theory has been recently adopted to analyze the
transaction confirmation time in blockchain network [8, 21]. Our
work puts forwards a more comprehensive model based on Jackson
queueing network for shard-based blockchains. As emphasized in

229

MobiHoc ’21, July 26–29, 2021, Shanghai, China Canhui Chen, Qian Ma, Xu Chen and Jianwei Huang

0 50 100 150 200 250
0

10

20

A
T

C
T

ATCT

fixed

dynamic

0 50 100 150 200 250
880

900

920

940

T
ra

n
s
a
c
ti
o
n
 r

a
te

Transaction rate of the random and fixed sharding protocol

S
1

S
2

S
3

S
4

0 50 100 150 200 250

Time

400

600

800

1000

T
ra

n
s
a
c
ti
o
n
 r

a
te

Transaction rate of the dynamic sharding protocol

S
1

S
2

S
3

S
4

user redistribution epoch user redistribution epoch

redistribute users

(a) User redistribution with the evolution of
transaction pattern

0 20 40 60 80 100 120
0

50

100

A
T

C
T

ATCT

fixed

dynamic

0 20 40 60 80 100 120
0

500

1000

1500

T
ra

n
s
a
c
ti
o
n
 r

a
te

Transaction rate of the random and fixed sharding protocol

S
1

S
2

S
3

S
4

0 20 40 60 80 100 120

Time

0

500

1000

T
ra

n
s
a
c
ti
o
n
 r

a
te

Transaction rate of the dynamic sharding protocol

S
1

S
2

S
3

S
4

maximum throughput

validator vote and system

reconfiguration epoch

validator vote and system

reconfiguration epoch

validators vote and

users are redistributed

(b) Validator vote and user redistribution
with the concentration of transactions

0 10 20 30 40 50 60 70 80 90 100
0

50

100

A
T

C
T

ATCT

fixed

dynamic

0 10 20 30 40 50 60 70 80 90 100
500

1000

1500

2000

T
ra

n
s
a
c
ti
o
n

 r
a
te

Transaction rate of the random and fixed sharding protocol

S
1

S
2

S
3

S
4

0 10 20 30 40 50
0

500

1000

1500

T
ra

n
s
a

c
ti
o

n
 r

a
te

System with 4 shards

50 60 70 80 90 100
0

500

1000

1500
System with 8 shards

maximum throughput

increase the shard number

maximum throughput

validator vote and

system reconfiguration epoch

validator vote and

system reconfiguration epoch

(c) System reconfiguration and user redistri-
bution with the increase in transactions

100 110 120 130 140 150 160 170 180 190 200
0

50

100

A
T

C
T

ATCT

fixed

dynamic

100 110 120 130 140 150 160 170 180 190 200
0

1000

2000

T
ra

n
s
a
c
ti
o
n
 r

a
te

Transaction rate of the random and fixed sharding protocol

S
1

S
2

S
3

S
4

100 110 120 130 140 150

200

400

600

800

T
ra

n
s
a
c
ti
o
n
 r

a
te

System with 8 shards

150 160 170 180 190 200

200

400

600

800

System with 4 shards

20% of the maximum

maximum throughput

validator vote and

system reconfiguration epoch

validator vote and

system reconfiguration epoch

reduce the shard number

(d) System reconfiguration and user redis-
tribution with the decrease in transactions

Figure 8: Performance of the dynamic sharding protocol

a recent survey paper [27], transaction-aware user distribution in
shard-based blockchains remains a key challenging issue. As a thrust
towards this direction, we investigate the transaction-aware user dis-
tribution in the shard-based blockchain through queueing modeling
and game theoretical approach and design a sharding protocol with
dynamic user distributions to boost the system performance.

9 CONCLUSION
In this paper, we study the impact of user distributions on the perfor-
mance of the shard-based blockchain network. We propose a Jackson
queueing network model to formulate the average transaction confir-
mation time and the transaction fees. We also develop a shard-based
blockchain game to capture the decentralized nature of blockchain
for users to optimize their utilities. We further define a novel met-
ric of ATCT to quantify the system performance, and propose an
polynomial-time algorithm to find an efficient equilibrium. Besides,
we propose a novel sharding protocol with dynamic user distribution
based on our theoretical analysis and proposed algorithm. Experi-
mental results demonstrate the efficacy of the algorithm and the high
performance of the proposed protocol.

REFERENCES
[1] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George

Danezis. 2017. Chainspace: A sharded smart contracts platform. arXiv preprint
arXiv:1708.03778 (2017).

[2] Rory Bowden, Holger Paul Keeler, Anthony E Krzesinski, and Peter G Taylor.
2018. Block arrivals in the Bitcoin blockchain. arXiv preprint arXiv:1801.07447
(2018).

[3] V. Buterin. 2020. Ethereum Sharding FAQ. Retrieved May 13, 2020 from
https://github.com/ethereum/wiki/wiki/Sharding-FAQ

[4] Canhui Chen, Qian Ma, Xu Chen, and Jianwei Huang. [n.d.]. Online technical re-
port. https://www.dropbox.com/s/3hhodpw0tynz8jh/technical%20report_User%
20Distributions.pdf?dl=0 [Online].

[5] David Easley, Maureen O’Hara, and Soumya Basu. 2019. From mining to markets:
The evolution of bitcoin transaction fees. Journal of Financial Economics 134, 1
(2019), 91–109.

[6] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75–174.

[7] Erol Gelenbe and Guy Pujolle. 1998. Introduction to queueing networks. Vol. 2.
Wiley New York.

[8] Shoji Kasahara and Jun Kawahara. 2016. Effect of Bitcoin fee on transaction-
confirmation process. arXiv preprint arXiv:1604.00103 (2016).

[9] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized
ledger via sharding. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
583–598.

[10] Juanjuan Li, Yong Yuan, Shuai Wang, and Fei-Yue Wang. 2018. Transaction
queuing game in bitcoin blockchain. In 2018 IEEE Intelligent Vehicles Symposium
(IV). IEEE, 114–119.

[11] Ziyao Liu, Nguyen Cong Luong, Wenbo Wang, Dusit Niyato, Ping Wang, Ying-
Chang Liang, and Dong In Kim. 2019. A survey on applications of game theory
in blockchain. arXiv preprint arXiv:1902.10865 (2019).

[12] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 17–30.

[13] Mohammad Hossein Manshaei, Murtuza Jadliwala, Anindya Maiti, and Mahdi
Fooladgar. 2018. A game-theoretic analysis of shard-based permissionless
blockchains. IEEE Access 6 (2018), 78100–78112.

[14] Swan Melanie, Potts Jason, Takagi Soichiro, Witte Frank, and Tasca Paolo. 2019.
Blockchain Economics: Implications Of Distributed Ledgers-Markets, Communi-
cations Networks, And Algorithmic Reality. Vol. 1. World Scientific.

[15] Holly Moore. 2017. MATLAB for Engineers. Pearson.
[16] Satoshi Nakamoto. 2019. Bitcoin: A peer-to-peer electronic cash system. Techni-

cal Report. Manubot.
[17] Lan N Nguyen, Truc DT Nguyen, Thang N Dinh, and My T Thai. 2019. OptChain:

optimal transactions placement for scalable blockchain sharding. In 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS). IEEE,
525–535.

[18] Zhengwei Ni, Wenbo Wang, Dong In Kim, Ping Wang, and Dusit Niyato. 2019.
Evolutionary Game for Consensus Provision in Permissionless Blockchain Net-
works with Shards. In IEEE ICC. 1–6.

[19] Naoya Okanami, Ryuya Nakamura, and Takashi Nishide. 2020. Load Balancing
for Sharded Blockchains. engrXiv preprint engrXiv:fyqar (2020).

[20] Christos H Papadimitriou and Kenneth Steiglitz. 1998. Combinatorial optimiza-
tion: algorithms and complexity. Courier Corporation.

[21] Saulo Ricci, Eduardo Ferreira, Daniel Sadoc Menasche, Artur Ziviani, Jose Ed-
uardo Souza, and Alex Borges Vieira. 2019. Learning blockchain delays: a
queueing theory approach. ACM SIGMETRICS Performance Evaluation Review
46, 3 (2019), 122–125.

[22] János Sztrik. 2012. Basic queueing theory. University of Debrecen, Faculty of
Informatics 193 (2012), 60–67.

[23] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. 2019. Sok: Sharding on
blockchain. In Proceedings of the 1st ACM Conference on Advances in Financial
Technologies. 41–61.

[24] Jiaping Wang and Hao Wang. 2019. Monoxide: Scale out blockchains with
asynchronous consensus zones. In 16th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 19). 95–112.

[25] James N Webb. 2007. Game theory: decisions, interaction and Evolution. Springer
Science & Business Media.

[26] Gavin Wood et al. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[27] Guangsheng Yu, Xu Wang, Kan Yu, Wei Ni, J Andrew Zhang, and Ren Ping Liu.
2020. Survey: Sharding in blockchains. IEEE Access 8 (2020), 14155–14181.

[28] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapidchain:
Scaling blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 931–948.

[29] Peilin Zheng, Zibin Zheng, Jiajing Wu, and Hongning Dai. 2020. Xblock-ETH:
Extracting and Exploring Blockchain Data from Ethereum. IEEE Open Journal
of the Computer Society (2020).

230

https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://www.dropbox.com/s/3hhodpw0tynz8jh/technical%20report_User%20Distributions.pdf?dl=0
https://www.dropbox.com/s/3hhodpw0tynz8jh/technical%20report_User%20Distributions.pdf?dl=0

	Abstract
	1 Introduction
	2 System Model
	2.1 Participants in Shard-based Blockchain
	2.2 Dynamic Shard Selection
	2.3 User Distributions and Transactions

	3 Intra- and Inter-Shard Transaction Modeling
	3.1 Queueing Model for Transaction Confirmation Time
	3.2 Transaction Fee Model

	4 Shard-based Blockchain Game and Performance Analysis
	4.1 Shard-based Blockchain Game
	4.2 Equilibrium Analysis
	4.3 Performance Analysis

	5 Polynomial-time Algorithm for Efficient Equilibrium Searching
	6 Protocol Design with Dynamic User Distributions
	6.1 Dynamic Sharding Protocol
	6.2 User Distribution Table
	6.3 User Redistribution Process
	6.4 Validator Vote Process
	6.5 System Reconfiguration Process

	7 Performance Evaluation
	7.1 Experiments Design and Configuration
	7.2 Community Detection of User Categories
	7.3 Performance of Different User Distributions
	7.4 Running Time of Algorithm 1
	7.5 Performance of the Sharding Protocol with Dynamic User Distributions

	8 Related Work
	9 Conclusion
	References

