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Abstract—This paper handles the noise-free or noisy syn-
chronization control of Genesio chaotic (GC) system. To do so,
Zhang dynamics (ZD) method is presented and exploited, and
thus the ZD controllers, noise-free or noisy, are theoretically
researched. Firstly, the presented ZD controller for GC system
synchronization with no noise perturbation is analyzed, and the
synchronization error as a whole (i.e., in the form of vector
norm) between the drive GC system and the response GC
system converges globally exponentially to zero. Secondly, the
presented ZD controller for GC system synchronization with
noise perturbation is analyzed as well, and detailed theoretical
analyses (i.e., proofs) and results show that the synchronization
error as a whole (i.e., in the form of vector norm) converges
globally to a small bound of error. So, the ZD controllers provided
in this paper (including the ones with unequal parameters) are
not only simple and effective but also quite robust for the GC
system synchronization.

Keywords—noisy; Zhang dynamics (ZD); Genesio chaotic (GC)
system; synchronization; analyses; unequal parameters.

I. PRELIMINARIES AND CONTROLLERS

The differential equations of drive Genesio chaotic (GC)

system [1, 2] are⎧⎨
⎩

ẋ1(t) = x2(t) ∈ R,
ẋ2(t) = x3(t) ∈ R,
ẋ3(t) = −cx1(t)− bx2(t)− ax3(t) + x2

1(t) ∈ R,
(1)

where x1(t) ∈ R, x2(t) ∈ R and x3(t) ∈ R denote state

variables, and the parameters a ∈ R
+, b ∈ R

+ and c ∈ R
+

are positive real constants, with ab < c ∈ R
+.

To synchronize with drive GC system (1), the response GC

system with control input u(t) ∈ R added is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẏ1(t) =y2(t) ∈ R,

ẏ2(t) =y3(t) ∈ R,

ẏ3(t) =− cy1(t)− by2(t)− ay3(t)

+ y21(t) + u(t) ∈ R.

(2)

The synchronization purpose is that the trajectories of the

response GC system (2) globally converge to those of the drive

GC system (1). The synchronization errors are thus defined

between the drive GC system (1) and the response GC system

(2) as follows:⎧⎨
⎩

e1(t) = y1(t)− x1(t) ∈ R,
e2(t) = y2(t)− x2(t) ∈ R,
e3(t) = y3(t)− x3(t) ∈ R.

(3)

For the convenience of simply and better presenting, ei =
ei(t) ∈ R, xi = xi(t) ∈ R, yi = yi(t) ∈ R with i = 1, 2, 3,

and u = u(t) ∈ R. Thus, on the basis of (2) and (3), we have

the differential equations of the synchronization errors as the

following ones:⎧⎨
⎩

ė1 = e2 ∈ R,
ė2 = e3 ∈ R,
ė3 = −ce1 − be2 − ae3 + (x1 + y1)e1 + u ∈ R.

(4)

Besides, e = [e1, e2, e3]
T ∈ R

3 stands for the synchronization

error vector. The basic purpose of the research is to design a

controller u ∈ R so that the response system (2) is synchro-

nized with the drive system (1), requiring that ‖e‖2 ∈ R
+

gradually converges to zero, or limt→+∞ sup ‖e‖2 ∈ R
+ is a

very little positive constant (near zero) in practice.

By ZD method [3–6] with its fundamental novelties dis-

cussed mainly in [6], we firstly design a simple, effective

and robust ZD controller with equal parameters for the GC

system synchronization. Without or with noise perturbation,

the robust ZD controller can both synchronize the response

system (2) with the drive system (1). Besides, the detailed

theoretical analyses are given as one main contribution of the

paper in the next section, extended to unequal parameters.

Now, for synchronizing the response GC system (2) with

the drive GC system (1), the ZD controller is designed and
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established via the following simple, direct and straightforward

ZD steps and formulas.

z1 = e1 = y1 − x1 ∈ R. (5)

ė1 = −λe1 ∈ R. (6)

z2 = ė1 + λe1 = e2 + λe1 ∈ R. (7)

ż2 = −λz2 ∈ R. (8)

e3 + 2λe2 + λ2e1 = 0 ∈ R. (9)

z3 = e3 + 2λe2 + λ2e1 ∈ R. (10)

ż3 = −λz3 ∈ R. (11)

Finally, on the basis of equations (4) and (11), the ZD

controller u ∈ R is obtained as the following:

u = (c−λ3)e1+(b−3λ2)e2+(a−3λ)e3− (x1+y1)e1 ∈ R.
(12)

Note that, in practice, noises are everywhere. In general,

noises are expressed as additive noise δ(t) ∈ R. In this paper,

we suppose that these noises are also bounded, i.e., |δ(t)| �
δmax ∈ R

+ with δmax as a positive bound. Thus, the proposed

controller (12) under the pollution of noises in practice now

becomes

ũ = (c−λ3)e1+(b−3λ2)e2+(a−3λ)e3−(x1+y1)e1+δ(t).
(13)

II. THEORETICAL ANALYSES ON CONTROLLER u OR ũ

In this section, the performance analyses (including theoret-

ical results) of the ZD controller about noise perturbation are

shown. In the first part, the controller u (12) for synchronizing

the GC system is analyzed, and the synchronization error

as a whole (i.e., in a vector norm) between the drive GC

system (1) and the response GC system (2) is proved to

globally exponentially converge to zero. In the second part,

controller ũ (13) for the synchronization of drive GC system

(1) is analyzed, and the detailed theoretical analyses (including

theoretical results) show that the synchronization error as a

whole (i.e., in a vector norm) globally converges to a small

error bound. In other words, the effectiveness and robustness

of the ZD controller for synchronization of Genesio chaotic

system control are proved through the detailed theoretical

analyses as follows (please see [7, 8] and references therein).

A. ZD Controller Without Noise Perturbation

The performance analyses (including theoretical results) on

noise-free ZD controller u (12) for synchronization of the

GC system (1) are presented now and here, where u, again,

denotes the control input of response GC system (2). As the

preliminary, the following lemma is also provided [9].

Lemma 1: For α̃ > 0 ∈ R, β̃ > 0 ∈ R and t ≥ 0 ∈ R, there

exist α > 0 ∈ R and β > 0 ∈ R such that

α̃exp(−β̃t)tn ≤ αexp(−βt), (14)

where n is a natural number.

Theorem 1: Starting with any initial states x(0) ∈ R
3 and

y(0) ∈ R
3, response GC system (2) equipped with controller

u (12) is synchronized with drive GC system (1), and the

synchronization error ‖e‖2 globally exponentially converges

to zero.

Proof. Substituting controller u (12) into ė3 of differential

equations (4) of synchronization errors yields

ė3 = −λ3e1 − 3λ2e2 − 3λe3. (15)

Replacing ė3 of (4) with the above equation (15) yields

ė =

⎡
⎣ė1ė2
ė3

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
−λ3 −3λ2 −3λ

⎤
⎦
⎡
⎣e1e2
e3

⎤
⎦ = Ae,

with matrix A ∈ R
3×3. Thus, we obtain

e = exp(At)e(0). (16)

The characteristic polynomial of A can be obtained as follows:

|sI −A| = s3 + 3λs2 + 3λ2s+ λ3 = (s+ λ)3, (17)

where s ∈ R is a variable of characteristic polynomial of

A, and I ∈ R
3×3 is the identity matrix. Evidently, the

characteristic roots s1,2,3 = −λ < 0 ∈ R. Thus, we obtain

lim
t→+∞ ‖e‖2 = lim

t→+∞ ‖exp(At)e(0)‖2 = 0, (18)

which means that the synchronization error ‖e‖2 gradually

converges to zero.
Based on the characteristic roots that we obtain, the Jordan

canonical form J ∈ R
3×3 of matrix A can be obtained as

follows [7]:

J = T−1AT =

⎡
⎣−λ 1 0

0 −λ 1
0 0 −λ

⎤
⎦ ,

where T ∈ R
3×3 is the nonsingular transformation matrix,

and T−1 is the inverse matrix of T . Thus, we have the state

transition matrix:

exp(At) = T exp(Jt)T−1 = T exp(−λt)

⎡
⎣1 t t2

2
0 1 t
0 0 1

⎤
⎦T−1.

So, there is

exp(At)e(0) = exp(−λt)T

⎡
⎣1 t t2

2
0 1 t
0 0 1

⎤
⎦T−1e(0),

where e(0) = [e1(0), e2(0), e3(0)]
T, and ei(0) = yi(0) −

xi(0), with i = 1, 2, 3. Furthermore, we have

exp(At)e(0) = exp(−λt)[f1(t), f2(t), f3(t)]
T, (19)

where fi(t) = ait
2 + bit+ ci, with i = 1, 2, 3. Therefore, we

have

|ei| = |exp(−λt)fi(t)|
= |exp(−λt)(ait

2 + bit+ ci)|
≤ |ai|exp(−λt)t2 + |bi|exp(−λt)t

+ |ci|exp(−λt).

(20)

483



According to Lemma 1 and (20), we obtain

|ei| ≤ |ai|exp(−λt)t2 + |bi|exp(−λt)t

+ |ci|exp(−λt)

≤ αi1exp(−βi1t) + αi2exp(−βi2t)

+ αi3exp(−βi3t)

≤ 3 max
1≤j≤3

{αij}exp(− min
1≤j≤3

{βij}t)
= αiexp(−βit),

(21)

where αij > 0, βij > 0, αi = 3max1≤j≤3{αij} > 0 and

βi = min1≤j≤3{βij} > 0. Thus, we have

‖e‖2 =
√

e21 + e22 + e23

≤ (
(α1 exp(−β1t))

2 + (α2 exp(−β2t))
2

+(α3 exp(−β3t))
2
)1/2

≤
√
3 max
1≤i≤3

{αi}exp(− min
1≤i≤3

{βi}t)
= αexp(−βt),

(22)

where α =
√
3max1≤i≤3{αi} > 0 and β = min1≤i≤3{βi} >

0. Evidently, the synchronization error ‖e‖2 is of exponential

convergence to zero.

Thus, we have the conclusion that response GC system (2)

synthesized by controller u (12) is synchronized with drive

GC system (1), and the synchronization error ‖e‖2 globally

exponentially converges to zero. Evidently, ei also globally

exponentially converges to zero. The proof is thus completed.

B. ZD Controller with Noise Perturbation

The performance analyses on noise-perturbed ZD controller

ũ (13) for synchronizing the GC system are presented in the

following theorem, where ũ (13) denotes the control input u
with noise perturbation of response GC system (2).

Theorem 2: Starting with any initial states x(0) ∈ R
3 and

y(0) ∈ R
3, response GC system (2) is synchronized relatively

accurately with drive GC system (1), equipped with controller

ũ (13) perturbed by bounded noise δ(t), i.e., |δ(t)| � δmax.

Speaking in mathematics and more accurately, the steady-state

error e satisfies limt→+∞ sup ‖e‖2 < ξ with

ξ = (δmax/λ)
√

1/λ4 + 16/(λ2exp(4)) + 4/exp(2),

which can be decreased to be arbitrarily small by increasing

λ ∈ R
+ to be sufficiently large.

Proof. Substituting controller ũ (13) into ė3 of (4), we obtain

ė3 = −λ3e1 − 3λ2e2 − 3λe3 + δ(t). (23)

Replacing ė3 of (4) with the above equation (23) yields

ė =

⎡
⎣ė1ė2
ė3

⎤
⎦ =

⎡
⎣ 0 1 0

0 0 1
−λ3 −3λ2 −3λ

⎤
⎦
⎡
⎣e1e2
e3

⎤
⎦+

⎡
⎣ 0

0
δ(t)

⎤
⎦ .

Let b(t) = [0, 0, δ(t)]T. Thus, we obtain

e = exp(At)e(0) +

∫ t

0

exp(A(t− τ))b(τ)dτ. (24)

For the matrix A, we obtain exp(At) as follows:

exp(At) =

⎡
⎣p11 p12 p13
p21 p22 p23
p31 p32 p33

⎤
⎦ = [p1(t),p2(t),p3(t)]

with

p3(t) =

⎡
⎣p13p23
p33

⎤
⎦ =

⎡
⎣ (t2exp(−λt))/2

(t− λt2/2)exp(−λt)
(1 + λ2t2/2− 2λt)exp(−λt)

⎤
⎦ . (25)

Based on b(t) = [0, 0, δ(t)]T and (25), we have

∫ t

0

exp(A(t− τ))b(τ)dτ =

∫ t

0

δ(τ)p3(t− τ)dτ. (26)

According to the calculus method, we have

∫ t

0

p13(t− τ)dτ =

∫ t

0

p13(τ)dτ

=
−exp(−λt)(λ2t2 + 2λt+ 2)

2λ3
−

(
− 1

λ3

)

= φ1(t) +
1

λ3
,∫ t

0

p23(t− τ)dτ =

∫ t

0

p23(τ)dτ

=
t2exp(−λt)

2
− 0

= φ2(t),∫ t

0

p33(t− τ)dτ =

∫ t

0

p33(τ)dτ

=
−texp(−λt)(λt− 2)

2
− 0

= φ3(t),

(27)

where φ1(t), φ2(t) and φ3(t) are the primitive functions of

p13(t), p23(t) and p33(t), respectively. Based on (27), we

firstly obtain

lim
t→+∞ sup

∣∣∣∣
∫ t

0

δ(τ)p13(t− τ)dτ

∣∣∣∣
≤ lim

t→+∞ sup

∫ t

0

|δ(τ)||p13(t− τ)|dτ

≤ lim
t→+∞

∫ t

0

δmax|p13(t− τ)|dτ

= δmax lim
t→+∞

∫ t

0

|p13(τ)|dτ

= δmax lim
t→+∞

∫ t

0

p13(τ)dτ

= δmax lim
t→+∞

(
φ1(t) +

1

λ3

)

=
δmax

λ3
.

(28)
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Secondly, according to (27), we have

lim
t→+∞

∫ t

0

p23(t− τ)dτ = lim
t→+∞

∫ t

0

p23(τ)dτ

= lim
t→+∞φ2(t) = 0.

lim
t→+∞

∫ t

0

p33(t− τ)dτ = lim
t→+∞

∫ t

0

p33(τ)dτ

= lim
t→+∞φ3(t) = 0.

(29)

Besides, it is evident that

p23(t)

⎧⎪⎪⎨
⎪⎪⎩

= 0, if t = 0
> 0, if t ∈ (0, 2/λ),
= 0, if t = 2/λ,
< 0, if t ∈ (2/λ,+∞).

p33(t)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

> 0, if t ∈ [0, (2−√
2)/λ),

= 0, if t = (2−√
2)/λ,

< 0, if t ∈ ((2−√
2)/λ, (2 +

√
2)/λ),

= 0, if t = (2 +
√
2)/λ,

> 0, if t ∈ ((2 +
√
2)/λ,+∞).

Then, we have

lim
t→+∞ sup

∣∣∣∣
∫ t

0

δ(τ)p23(t− τ)dτ

∣∣∣∣
≤ lim

t→+∞ sup

∫ t

0

|δ(τ)||p23(t− τ)|dτ

≤ lim
t→+∞

∫ t

0

δmax|p23(t− τ)|dτ

= δmax lim
t→+∞

∫ t

0

|p23(τ)|dτ

= 2δmax

∫ 2/λ

0

p23(τ)dτ

= 2δmaxφ2(2/λ)

=
4δmax

λ2exp(2)
.

(30)

and

lim
t→+∞ sup

∣∣∣∣
∫ t

0

δ(τ)p33(t− τ)dτ

∣∣∣∣
≤ lim

t→+∞

∫ t

0

|δ(τ)||p33(t− τ)|dτ

≤ lim
t→+∞

∫ t

0

δmax|p33(t− τ)|dτ

= lim
t→+∞

∫ t

0

δmax|p33(τ)|dτ

= −2δmax

∫ (2+
√
2)/λ

(2−√
2)/λ

p33(τ)dτ

= −2δmax(φ3((2 +
√
2)/λ)− φ3((2−

√
2)/λ))

<
2δmax

λexp(1)
.

(31)

Based on (26), (28), (30) and (31), we have

lim
t→+∞ sup

∥∥∥∥
∫ t

0

exp(A(t− τ))b(τ)dτ

∥∥∥∥
2

= lim
t→+∞ sup

∥∥∥∥
∫ t

0

δ(τ)p3(t− τ)dτ

∥∥∥∥
2

<

∥∥∥∥∥
[
δmax

λ3
,

4δmax

λ2exp(2)
,

2δmax

λexp(1)

]T
∥∥∥∥∥
2

=

√(
δmax

λ3

)2

+

(
4δmax

λ2exp(2)

)2

+

(
2δmax

λexp(1)

)2

=
δmax

λ

√
1

λ4
+

16

λ2exp(4)
+

4

exp(2)

= ξ.

(32)

Noticeably, ξ has a negative correlation with parameter λ.
Finally, we obtain

lim
t→+∞ sup ‖e‖2

= lim
t→+∞ sup

∥∥∥∥exp(At)e(0) +

∫ t

0
exp(A(t− τ))b(τ)dτ

∥∥∥∥
2

≤ lim
t→+∞ sup ‖exp(At)e(0)‖2

+ lim
t→+∞ sup

∥∥∥∥
∫ t

0
exp(A(t− τ))b(τ)dτ

∥∥∥∥
2

<ξ,

which proves that an upper bound of steady-state error

‖e‖2 synthesized by controller (13) is ξ. The proof is thus

completed.
Corollary 1: Under the conditions of Theorem 2, we

set noise δ(t) = δmax being a constant. With the noise-

perturbed controller ũ (13), the synchronization error e sat-

isfies limt→+∞ sup ‖e‖2 = δmax/λ
3, where e1 globally con-

verges to δmax/λ
3, and e2 and e3 both globally converge to

zero.
Proof. According to Theorem 1, (19) and (26), it is evident
that

lim
t→+∞ e1 = lim

t→+∞

(
exp(−λt)f1(t) +

∫ t

0
δ(t)p13(t− τ)dτ

)
,

lim
t→+∞ e2 = lim

t→+∞

(
exp(−λt)f2(t) +

∫ t

0
δ(t)p23(t− τ)dτ

)
,

lim
t→+∞ e3 = lim

t→+∞

(
exp(−λt)f3(t) +

∫ t

0
δ(t)p33(t− τ)dτ

)
.

(33)

We assume that the noise δ(t) = δmax is a constant, and

combine (33) with (27), thus having

lim
t→+∞ e1 = 0 + lim

t→+∞

∫ t

0

δmaxp13(t− τ)dτ

= lim
t→+∞ δmax

(
φ1(t) +

1

λ3

)
=

δmax

λ3
,

lim
t→+∞ e2 = 0 + lim

t→+∞

∫ t

0

δmaxp23(t− τ)dτ

= lim
t→+∞ δmaxφ2(t) = 0,

lim
t→+∞ e3 = 0 + lim

t→+∞

∫ t

0

δmaxp33(t− τ)dτ

= lim
t→+∞ δmaxφ3(t) = 0.
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Finally, we obtain

lim
t→+∞ ‖e‖2 = lim

t→+∞
∥∥[e1, e2, e3]T∥∥2 =

δmax

λ3
.

Although the synchronization error e satisfies

lim
t→+∞ ‖e‖2 = δmax/λ

3,

we have the achievement that response GC system (2) synthe-

sized by controller ũ (13) can also be synchronous with drive

GC system (1) by increasing λ to be sufficiently large. The

proof is thus completed.

III. SITUATION OF UNEQUAL PARAMETER VALUES

In the previous section, the performance analyses of the

ZD controller without and with noise perturbation are given.

In this section, the more general design and analyses of ZD

controller with unequal parameter values are given. Since the

theoretical analyses are similar to the previous ones, only the

final theoretical results are given here.

By applying the ZD method with unequal parameter values,

we obtain the following simple and direct formulas:

ė1 = −λ1e1,

z2 = ė1 + λ1e1 = e2 + λ1e1,

ż2 = −λ2z2,

z3 = e3 + (λ1 + λ2)e2 + λ1λ2e1,

ż3 = −λ3z3.

(34)

Finally, on the basis of equation (4) and the last equation of

(34), the ZD controller u is derived as follows:

u = (c− λ1λ2λ3)e1 + (b− (λ1λ2 + λ1λ3 + λ2λ3))e2

+ (a− (λ1 + λ2 + λ3))e3 − (x1 + y1)e1.
(35)

Correspondingly, the proposed controller (35) under the pol-

lution of the noises in practical systems becomes

ũ = (c− λ1λ2λ3)e1 + (b− (λ1λ2 + λ1λ3 + λ2λ3))e2

+ (a− (λ1 + λ2 + λ3))e3 − (x1 + y1)e1 + δ(t).
(36)

Theorem 3: When λ1 > 0 ∈ R, λ2 > 0 ∈ R and λ3 > 0 ∈
R are positive and generally unequal (including being equal as

a special case), starting with any initial states x(0) ∈ R
3 and

y(0) ∈ R
3, response GC system (2) equipped with controller

u (35) is synchronized with drive GC system (1), and the

synchronization error ‖e‖2 globally exponentially converges

to zero, as time t approaches infinity.

Theorem 4: When λ1 > 0 ∈ R, λ2 > 0 ∈ R and

λ3 > 0 ∈ R are positive and generally unequal (including

being equal as a special case), starting with any initial states

x(0) ∈ R
3 and y(0) ∈ R

3, response GC system (2) is

relatively accurately synchronized with drive GC system (1),

equipped with controller ũ (13) perturbed by bounded noise

δ(t), i.e., |δ(t)| � δmax. That is, the steady-state error e
satisfies limt→+∞ sup ‖e‖2 < ξ, where the bound of ξ can be

controlled by δmax and λ1, λ2, λ3, which can be decreased to

be arbitrarily small by increasing λ1, λ2, λ3 to be sufficiently

large.

Corollary 2: Under the conditions of Theorem 4, we

set noise δ(t) = δmax being a constant. With the noise-

perturbed controller ũ (36), the synchronization error e satis-

fies limt→+∞ sup ‖e‖2 = δmax/(λ1λ2λ3), where e1 globally

converges to δmax/(λ1λ2λ3), and e2 and e3 both globally

converge to zero.

IV. CONCLUSION

In this paper, the problem of synchronization for GC system

has been considered and investigated. By using the ZD method

(i.e., via ZD steps and formulas), a suitable and effective ZD

controller without or with noise perturbation to synchronize

GC system has been designed and investigated. For verify-

ing synchronization performance of the proposed controller,

detailed theoretical analyses have also been provided. Kindly

note that the simple design and numerical experiments of the

ZD method and controllers have been provided partially in the

literature [8]. All in all, the proposed ZD controller is simple,

effective and robust. In light of the simpleness and feasibility

of the ZD method, it has provided the possibility and potential

of using the method in more practical applications.
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